Data-driven learning of the G-limits in homogenization problems > 세미나

본문 바로가기
사이트 내 전체검색


세미나

모드선택 :              
세미나 신청은 모드에서 세미나실 사용여부를 먼저 확인하세요

Data-driven learning of the G-limits in homogenization problems

최선종(2019-24415) 0 23
구분 초청강연
일정 2021-07-13 10:00 ~ 12:30
강연자 박준서 (University of Iowa)
기타
담당교수 신동우
Multiscale equations with scale separation can be approximated by corresponding homogenized equations with slowly varying homogenized coefficients (G-limits). The inverse problem of recovering the G-limits given multiscale data is a difficult taskas it is typically ill-posed. In this work, we develop an efficient Physics-informed neural networks (PINNs) algorithm for recovering the G-limits from simulated multiscale data. We demonstrate that our approach could produce desirable approximations to theG-limits and, consequently, homogenized solutions via a small amount of data. Besides, we demonstrate the robustness of our method via several benchmark examples with both periodic and non-periodic multiscale coefficients.

세미나명

   

상단으로

Research Institute of Mathematics
서울특별시 관악구 대학동 서울대학교 자연과학대학 129동 305호
Tel. 02-880-6562 / Fax. 02-877-6541 su305@snu.ac.kr

COPYRIGHT ⓒ 자연과학대학 수학연구소 ALL RIGHT RESERVED.