Khintchine’s theorem on Diophantine approximation > 세미나

본문 바로가기
사이트 내 전체검색


세미나

모드선택 :              
세미나 신청은 모드에서 세미나실 사용여부를 먼저 확인하세요

Khintchine’s theorem on Diophantine approximation

bk21 0 78
구분 Rookies Pitch
일정 2025-09-23 16:30 ~ 17:30
강연자 김성민 (서울대학교)
기타
담당교수 강정수
Diophantine approximation is the study of approximating real numbers by rational numbers. For example, one can ask whether a real number x is ψ-approximable; that is, whether there are infinitely many rationals p/q satisfying |x-p/q|<ψ(q)/q for a given monotonic function ψ. A century ago, Khintchine discovered a remarkable dichotomy for the Lebesgue measure of the set of ψ-approximable numbers. Since then, Khintchine’s theorem has been extended in various directions, including inhomogeneous approximation and higher-dimensional generalizations. In this talk, I will introduce the Allen-Ramírez conjecture on removing the monotonicity condition from the inhomogeneous Khintchine-Groshev theorem and discuss a recent proof of the conjecture in the case (n,m)=(2,1).

강연시간 : 16:40-17:10

세미나명

   

상단으로

Research Institute of Mathematics
서울특별시 관악구 대학동 서울대학교 자연과학대학 129동 305호
Tel. 02-880-6562 / Fax. 02-877-6541 su305@snu.ac.kr

COPYRIGHT ⓒ 자연과학대학 수학연구소 ALL RIGHT RESERVED.