On the p-adic Group Cohomology of Finite Group Schemes > 강연영상

본문 바로가기
사이트 내 전체검색


강연영상

On the p-adic Group Cohomology of Finite Group Schemes

1331
일자 권혁준
강연자
소속

We introduce a cohomology theory for finite group schemes with commutative formal groups as coefficients. Using Fontaine's Witt covectors, this theory provides a p-adic cohomology theory for finite group schemes and is motivated by the failure of étale cohomology to detect inseparable extensions. We define a G-module structure on commutative formal group schemes and prove that their category forms a Grothendieck category, so it has enough injectives. We show that, with Witt covectors as coefficients, the derived functors of the invariants functor coincide with the cohomology computed via the bar resolution. As an application, we identify the first cohomology of a finite commutative p-group scheme G with its Dieudonné module.

Now

현재 On the p-adic Group Cohomology of Finite Group Schemes

강연자 : 권혁준 | 소속 : 서울대학교
Hot

인기 Symplectic geometry of $A_n$ Milnor fibers

강연자 : 김종명 | 소속 : 서울대학교
Hot

인기 Orbit Structures in Hamiltonian Dynamics

강연자 : 손범준 | 소속 : 서울대학교
Hot

인기 Physics-informed Neural Networks: A Neural Network-Based PDE Solver

강연자 : 이명수 | 소속 : 서울대학교
상단으로

Research Institute of Mathematics
서울특별시 관악구 대학동 서울대학교 자연과학대학 129동 305호
Tel. 02-880-6562 / Fax. 02-877-6541 su305@snu.ac.kr

COPYRIGHT ⓒ 자연과학대학 수학연구소 ALL RIGHT RESERVED.