No anomalous dissipation in two dimensional fluids > 강연영상

본문 바로가기
사이트 내 전체검색


강연영상

No anomalous dissipation in two dimensional fluids

200
일자 박재민
강연자
소속
In this talk, we will discuss Leray-Hopf solutions to the incompressible Navier-Stokes equations with vanishing viscosity. We explore important features of turbulence, focusing around the anomalous energy dissipation phenomenon. As a related result, I will present a recent result proving that for two-dimensional fluids, assuming that the initial vorticity is merely a Radon measure with nonnegative singular part, there is no anomalous energy dissipation. Our proof draws on several key observations from the work of J. Delort (1991) on constructing global weak solutions to the Euler equation. We will also discuss possible extensions to the viscous SQG equation in the context of Hamiltonian conservation and existence of weak solutions for rough initial data. This is a joint work with Mikael Latocca (Univ. Evry) and Luigi De Rosa (GSSI).
Hot

인기 On the p-adic Group Cohomology of Finite Group Schemes

강연자 : 권혁준 | 소속 : 서울대학교
Hot

인기 Symplectic geometry of $A_n$ Milnor fibers

강연자 : 김종명 | 소속 : 서울대학교
상단으로

Research Institute of Mathematics
서울특별시 관악구 대학동 서울대학교 자연과학대학 129동 305호
Tel. 02-880-6562 / Fax. 02-877-6541 su305@snu.ac.kr

COPYRIGHT ⓒ 자연과학대학 수학연구소 ALL RIGHT RESERVED.